
the barrier and along the axis of the channel; ~c, temperature of the channel surface; ~ , 
additional functions determined from (i0). Subscripts: i, number of series terms; j, num- 
ber of outside layer of the barrier, calculated from the middle layer; 1 and 2, external 
sides of the barrier. 
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MODIFICATION OF A FINITE-ELEMENT METHOD TO CALCULATE TEMPERATURE FIELDS 

AVERAGED OVER ONE COORDINATE 

Yu. T. Kostenko, L. M. Lyubchik, and E. V. Neznamova UDC 526.2 

We examined the approximate solution of an averaged nonsteady boundary-value 
problem of heat conduction in a two-dimensional region bounded by two contin- 
uously differentiable curves. 

When we study nonsteady thermal processes, we encounter a need to calculate the temper- 
ature field in a two-dimensional region of complex configuration. Difficulties in the solu- 
tion in the general formulation of the problem lead to a need to develop methods of simplify- 
ing the original boundary-value problem. For thermotechnical thin bodies, given a small 
temperature drop in one of the directions, simplification of the problem is possible by mak- 
ing a transition to temperatures averaged in the appropriate direction. Such a situation 
arises in the calculation of temperature fields in thin shelves, channels, etc. It is possi- 
ble, in this case, to simplify the computational procedure involved in studying the dynamics 
of thermal processes in a region of complex geometry. 

The average problem dealt with in this study can be solved by the method of finite elem- 
ents [i ]. 

Let us examine a two-dimensional region ~, bounded by two continuously differentiable 
curves x I = a (y), x 2 = b(y), 0 ~ y ~ d, 0 < a (y) < b(y) (see Fig. i). We will assume that 
at the initial instant of time the temperature 80(x, y) of the region is higher than the 
temperature 8 m of the medium. The transfer of heat from the side surface S of a cylinder, 
whose cross section is the region ~, follows the law 

--~ a8 1 =~(010n s s'Om)" 
The original boundary-value problem with boundary conditions of the lllrd kind has the 

form: 

Cy a~" ~ -~ ~- fs~ g' x)' (1) 

Lenin Polytechnic Institute, Khar'kov. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 57, No. 6, pp. 1016-1022, December, 1989. Original article submitted April 15, 1988. 
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Fig. I. Two-dimensional region with 
selected coordinate system. 

-~x "Vl + a  ,~- ov "V = = ( o - ~ ) ,  x=a(v); (2) 

_ ~ ( o o  1 oo b' ) 
Ox al l+b ,  ~ Oy V l + b , ~ -  =~(o-o.?, x = b ( v ) ,  (3) 

oo = ~ (o - oo, y = o, (4) 
Oy 

--L O0 
= ~ (o - -  o~), v = a ,  ( 5 )  

oy 
O(x, y, O ) = O  o(x, y). ( 6 )  

Let the temperature difference in the direction of x be sufficiently small, which is 
the case, for example, when max (b(y) - a(y) ~ d. O~y~d 

Let us introduce the function of the average temperature 0*(x, y) by averaging the temp- 
erature function in the direction of the x coordinate. This procedure is analogous ~o the 
volumetric averaging dealt with in [2]. 

We will apply the averaging operator 

1 b 
U[O]= b~a~[O(x' y, x)dx=O*(y, t) 

to both parts of Eq. (i): 

: r 1 + r cry + U[~ou]- 

Having expressed the function u [ ( a 2 e ) / ( a y 2 ) ]  in terms of the derivatives O* and having 
averaged the remaining terms of Eq. (i), we obtain: 

00" = ~ I O0 O0 + - f f ~ - - +  
oe- -a7  g---;, .,.=, `9**.=, 

(,~176 ' -a '~  ' b - -  a Oy ,=b x=a 

If we assume that the temperature gradient along the coordinate is small, with consider- 
ation of (2) and (3), we have 

g̀o* =x + )-~ (0*-0~+f~o~V, ~) (7) ........ (,9,0* b'--,~' ao* "V"i+v'  + V i + a "  
Cr & ~ b--a OV b--a 

Boundary conditions (4) and (5), as well as the original condition (6), respecticely, 
assume the form: 

,X 00" _ ,z (0" - -  ~ ) ,  y = O, 
av (8) 

--x `90* -~(o*--0~,  y=d,  (9) 
Oy 

O*(y, O) = Oo (y). (10) 
The solution of the derived equation by numerical methods calls for a lower volm~e of 

calculations than does the original Eq. (i). In this case, we take into consideration infor- 
mation regarding the influence exerted by the shape of the regional boundary and the ~nount 
of heat transferred to the side surface insofar as these pertain to the change in tempera- 
ture in the direction of the nonzero gradient. 
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Without disrupting generality, let us examine problem (7)-(10) in the region for which 
a (y) = 0, 0 < b 0 ! b(y) ~ bl. 

Turning to the dimensionless variables 0 = (O* - 0m)~ m, t =A[/Cyd 2, we d e r i v e  the fol- 
lowing equations: 

oo o ~ o b' (y) oo 1 + V l + b ; ~  
+ B  o O=:f(y, O, 

ot oy~ b (y) @ b (V) 

08 
- - - - B O O  = O, y=0, 
@ 

a0 
+BoO = 0 ,  b,= 1, (13)  

'0y 

0(V, 0) = 0o(Y). (14) 

Here B0 = a d/X, ~(y, t) = fsou*(Y, t)d2/Sm A. 

Let us write this problem in operator form: 

dO 
+ A O =  f, 

dt 

(11) 

(12) 

o (o) = 0o, 

(15) 

(16) 

where ~(y, t) = L2(0, i) • (0, T)), 80(y) e L2(0 , i); A, is the operator -(a20/Sy 2) -(b'/b)• 
(88/8y) + B0(I +l/]+b,2 /b)8 with the determination region 

�9 dv 
D(A) {v:v6L~(O, 1),--~/~r 6L~(O, I), AvEL2(O, 11, 

dvd-Yv (0)--8~ u (0) = o , - ~  (~) + Bo ~ (l) = 0 }, b @ ~ C~ (0, l), I b' (y) I~. bo.. 

For an approximate solution of the formulated problem we will use the projection-grid 
method of solving nonsteady problems [i]. The problem is solved in two stages: initially 
we have the approximation with respect to the spatial variable, and then with respect to 
time. 

For the approximation with respect to y we choose a system of piecewise-linear func- 
tions { ~i (y)}i=0 N, constructed on a grid of nodes [i] Y0 < Y! .-- < YN-I < YN, YQ = 0, 
YN = i. This system exhibits the property of uniform linear independence and approximates 
the functions from the space W.2(0, i). The set of linear combinations of the form v N = 
N 

Z a~i(Y) forms a subspace in the space W21(0, i), and the sequence {HN}N=I m is dense to the 
i=0 

l i m i t  in W21(I, 0) .  I f  t he  energy  space g e n e r a t e d  by the  o p e r a t o r  A i s  e q u i v a l e n t  to  the  
N 

space W21(0, 1) ,  the  approximate s o l u t i o n  u N = Zai~Pi(Y) , c o n s t r u c t e d  in accordance  wi th  
i-~-0 

the Ritz method in energy spaces, will converge as N + ~ to the generalized solution u 0 in 
the metric of the space H A . 

We will seek the approximate solution of problem (15), 

N 

u~ (y, t) = ~ a~ (t) % @, 
i=O 

where the coefficients 
e q u a t i o n s :  

(16) in the form 

a~ are determined from the following system of ordinary differential 

- ~ - - ,  ~ , ( t )+ [um cpf](t)=/f, cp~) (17) 

under the initial conditions 

(uN(y, ~ - - u o ,  03 = O, ~ = O, N, (18)  

which arises in the determination of the generalized solution. Here the parentheses denote 
the scalar product in the original Hilbert space L2(0, i), while the brackets denote the 
scalar product in the energy space H A . 
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Problem (17), (18) can be written in the form: 

where 

d ~  
B ~ + Aa = F (t), 

B a (0) = ao, 

a ( t ) = ( a o ( t )  . . . . .  aN(t)) r, a o = ( a , o  . . . . .  ao~) r, aoi = (0o, ~p~), f =  
= o , - -& F it) --- (Fo (t) . . . . .  F~  (t)) r, F~ (t) = (f, (~3, ~ = 0, ~V; B = (B~j), 
B~I = Bj~ = (th, q!~), i, ] = 0, N; A = (A~j), A~, ----- A.fi = [%, ~P.~], i, ] = 0, N-----~ 

( 1 9 )  

( 2 0 )  

If the original operator A exhibits the property of positive determinacy, syst~ (19), 
(20) will have the singular solution 

t 

a C0 = e x p  {--B- 'At}  B - ~  + S exp {--B-~A (t - -  t')} B-1F (t') ~ ' ,  
0 

where exp {Gt} is the matrix exponent. 

Thus, the approximate solution of problem (15), (16) will be determined uniquely. 

Let us now turn to validation of the possibility of using this method in connection 
with the solution of the original problem (11)-(14). 

Let us examine the Hilbert space L2b(0, i) with the scalar product 

I 

0 

It is obvious that the spaces L~(0, !) and L2b(0, 1) are equivalent, since b(y) assumes 
only positive values and is bounded. Consequently, determination of the generalized solu- 
tion has significance even when L2b(0, I) arid the sys~em of approximating functions 
{ ~i (Y)}i=0 ~ retains its properties in L2b(0, I). In this space the operator of problem 
(15), (16) exhibits its properties of symmetricity and positive definiteness. 

LEMMA i. Operator A is symmetrical in L2b(0, i). 

Proof. Let us examine the scalar product 

(Au, v )=  .[ ~u  du -{- Bo u vbdy = 
o dy 2 b dy b 

1 

=Bo(b(1)u(1)o( l )+b(O)u(O)v(O))+, fb  du dv dy + 
o dy dy 

1 

+ Be.f  0 +1/'1 + b "  ) . v @  = (v, Au). 
0 

Consequently, A = h*. 

LENNA 2. O p e r a t o r  A i s  p o s i t i v e  d e f i n i t e  i n  L 2 b ( 0 ,  1 ) .  

Proof. Assuming u = v, we obtain 

[ 

(Au, u) = BD(b(1)u'~(1) + b(O)u~'(O))+ bIb ( du )a \ d y ]  , iV+ 

, __ 1 /  du \~ 
(' + / '  I 

o t-~g/ /+2Boll,.,d,>~o~lf.lt~, 
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and here ~ = min{b0, B0b0}, c m = ( 'y/2 + 2B0)/b I. 

In the proof we made use of the inequality 

and t h e  e q u a l i t y  o f  t h e  s p a c e s  L2b (o ,  1) and L2(O, 1 ) .  

Let us now turn to an examination of the energy space generated by operator A. For 
this we will introduce the scalar product of two functions from L=b(0, i), having the follow- 
ing form: 

' (  dydu dyd----~v + B ~  )uv) dg+B~ [u, v] = ! b 

+ b (o) u (o) v (o)). 
The space specified by such a scalar product will be known as the energy space H A . 

LEMMA 3. Spaces H A and W=1(0, i) are equivalent. 

Proof. By definition, 

(d .?  [u, u] = b dE + Bo .t (l + V'I + b")u:dy+ Bo(b(l)u~(1)+b(O)u=(O)) "~ 
\ d r y  

1 <b,.[( d. 
o k @ )  

< ~  kkay/ u= dy 
0 

and here b 3 = 0~<#~<max, (i + Vl+b" ) 

equality llUlJL2(3fl) 2 ~ c 2 IIullw21(~)2. 

On t h e  o t h e r  hand ,  

0 

I 

dy + Bob3 S uzdy + B~ (u2 (1) + u 2 (0)) .<~ 
0 

"6 k \ dy / = u t1~'~, 

c 1 = m a x { b l ,  B0b~} , c 2 i s  a c o n s t a n t  f rom [1] t h e  i n -  

1 !. ] 

' ( , , , / '  ) < c, S b k av J + 8, 0 + v" ~ ) u~ av + aBo(t,(1) u'-(1) + b (0),,,(0)) = c, II u I1~,, 
0 

and here c, = max{(i/b0), (i/2B0}. 

Consequently, the approximation of the solution by means of the selected basis func- 
tions is possible and the solution of the problem will be a function from W21(0, i). 

If the temperature of the ambiant medium changes over time, then 8 m = 8m(E) and the 
temperature of the ambiant medium at the Jnitial instant of time is chosen as the character- 
istic parameter. Changing over to dimensionless variables, we obtain the following bound- 
ary-value problem 

Here 

~ =  b'(y) O0 1 -I- ] /1  -]-- O ' '  
ao az-----~~ + - -  - -  Bo 0 + T(y, t), (21 ) 
av a# b(y) av b(v) 

O..._O.0 _BoO = __BoOm, Y = 0, ( 22 )  
Oy 

08 
- - + B o 0 = B o %  y =  1, (23)  Oy 

e (o, y) = % (24 )  

�9 d z 
= 0*I%(O), 7 ( v ,  t) = -t- - - 2 -  o.,~,) t, (y) 0 

In this ease the region for the determination of the operator 
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D (A) = v : v E L~ (0, 1), ~ 6 L2 (0, 1), (0) - -  Bov (0) = --Bo~, 

ao ., (1) + Boo (1) = B.%,}, 
dy 

and the  s c a l a r  product  (Au, v) in the  space L2b(o, 1) has the  form: 

I'1 ~ # u  b' t I (v) du 1 + V 1  + b'" (Au, v) o" ~ dy z b (y) dg + B~ b (g) - -  uj vbdy = 

=--b(1)v(1)  ( 1 )+b (0 )v (0 ) -~ y  (0 )+ . ,  dy d~ 
o 

+BoO + V1 + b "  )uv) dy = [u, v]--O~(t) Bo(b(1)v(1)+b(O)v(O)), 
l 

where [u, v] is the earlier scalar product specified by operator A with uniform boundary con- 
ditions. 

Consequently, Eq. (15), on multiplication by the function from L2b(0, I), is written as 

--~--, v + Iu, vj --- (7, v )+Bo%(t ) (b(1)v(1)  + b(O)v(O)). 

Thus, the nonuniformity of the boundary conditions over time will be taken into consi- 
deration in the second stage of the approximation of the solution over time. 

Having chosen the system of basis functions { ~i (y)}i=0 ~ and applying all of the consi- 
derations for Eq. (21), we come to the conclusion that in this case the equation for the de- 
termination of the coefficients of expansion over the basis functions ai (t) has the follow- 
ing form: 

B da +Aa=F(t)+BoOm(t)d)[o  11, 
dt 

where the matrices A, B are the same as in Eq. (19); ~[0,i] is the vector column of the form 
(b(0) ~0 (0), 0, ..., 0, b(1) ~m(1) T, which is associated with the change in temperatu::e at 
the ends of the segment (0, i); F(t) is the vector column of elements (5, ~i), where : is 
the function in the right-hand side of Eq. (21). 

In conclusion, let us note that thea.priori estimates of the convergence are analogous 
to those obtained in [i], since the norms in L2(0, i) and L2b(0, I) are equivalent: 

T 
mtax 11 u -  UN ][L~ < c'ha~2, jo [] u -- u~ ll[~ <~ c**h 2. 

NOTATION 

~, coefficient of thermal conductivity; a, heat-transfer coefficient; n, unit nozmal 
to the surface; C, heat capacity of the material; 7, specific weight; fsou(X, Y, T), distri- 
bution density for the internal sources of heat; fsou*(Y, T), specific power of interEal 
heat sources averaged over the excoordinate. 
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